English research articles (RAs) are an essential genre in academia, so the attempts to employ NLP to assist the development of academic writing ability have received considerable attention in the last two decades. However, there has been no study employing feature engineering techniques to investigate the linguistic features of RAs of different academic impacts (i.e., the papers of high/moderate citation times published in the journals of high/moderate impact factors). This study attempts to extract micro-level linguistic features in high- and moderate-impact journal RAs, using feature engineering methods. We extracted 25 highly relevant features from the Corpus of English Journal Articles through feature selection methods. All papers in the corpus deal with COVID-19 medical empirical studies. The selected features were then validated of the classification performance in terms of consistency and accuracy through supervised machine learning methods. Results showed that 24 linguistic features such as the overlapping of content words between adjacent sentences, the use of third-person pronouns, auxiliary verbs, tense, emotional words provide consistent and accurate predictions for journal articles with different academic impacts. Lastly, the random forest model is shown to be the best model to fit the relationship between these 24 features and journal articles with high and moderate impacts. These findings can be used to inform academic writing courses and lay the foundation for developing automatic evaluation systems for L2 graduate students.


翻译:英文研究文章(RAs)是学术界的一个重要特色,因此,在过去二十年中,试图利用NLP协助发展学术写作能力的努力受到相当重视;然而,没有研究采用地物工程技术调查具有不同学术影响的RAs语言特征(即高/中度引用论文在高/中度影响因素杂志上发表);这项研究试图利用地物工程方法,在高和中度影响RAs杂志中提取微观语言特征,我们通过特质选择方法,从《英国杂志》杂志文章Corpus中提取了25个高度相关的特质;所有实体文件都涉及COVID-19医学经验研究;随后,通过监督的机器学习方法,鉴定了分类在一致性和准确性方面的表现;结果显示,24种语言特征,如相邻的句子重叠、第三人文、辅助动词、紧张、情感语言为具有不同学术影响的杂志文章提供了一致和准确的预测。最后,随机森林模型显示,随机森林模型是用于高级研究结论的最好模型,可以用于发展24种学系之间的自动分析。

0
下载
关闭预览

相关内容

《工程》是中国工程院(CAE)于2015年推出的国际开放存取期刊。其目的是提供一个高水平的平台,传播和分享工程研发的前沿进展、当前主要研究成果和关键成果;报告工程科学的进展,讨论工程发展的热点、兴趣领域、挑战和前景,在工程中考虑人与环境的福祉和伦理道德,鼓励具有深远经济和社会意义的工程突破和创新,使之达到国际先进水平,成为新的生产力,从而改变世界,造福人类,创造新的未来。 期刊链接:https://www.sciencedirect.com/journal/engineering
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
5+阅读 · 2018年1月30日
Arxiv
5+阅读 · 2018年1月23日
VIP会员
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员