Foucaud et al. recently introduced and initiated the study of a new graph-theoretic concept in the area of network monitoring. Let $G=(V, E)$ be a graph. A set of vertices $M \subseteq V(G)$ is a distance-edge-monitoring set of $G$ if any edges in $G$ can be monitored by a vertex in $M$. The distance-edge-monitoring number $\operatorname{dem}(G)$ is the minimum cardinality of a distance-edge-monitoring set of $G$. In this paper, we first show that $\operatorname{dem}(G\setminus e)- \operatorname{dem}(G)\leq 2$ for any graph $G$ and edge $e \in E(G)$. Moreover, the bound is sharp. Next, we construct two graphs $G$ and $H$ to show that $\operatorname{dem}(G)-\operatorname{dem}(G-u)$ and $\operatorname{dem}(H-v)-\operatorname{dem}(H)$ can be arbitrarily large, where $u \in V(G)$ and $v \in V(H)$. We also study the relationship between $\operatorname{dem}(H)$ and $\operatorname{dem}(G)$ for $H\subset G$. In the end, we give an algorithm to judge whether the distance-edge-monitoring set still remain in the resulting graph when any edge of a graph $G$ is deleted.
翻译:Foucaud 等人最近推出并开始研究网络监测领域的新的图形理论概念。 请将$G=( V, E) $作为图表。 如果任何G$的边缘可以用美元来监测, 则一组G$的远程监控为$G美元。 远程- 监测编号$\ Operatorname{dem} (G) $是网络监测领域最起码的基点。 在本文件中, 我们首先显示, $\ Oatorname{ (G\ setminus e) - operatorname{ dem} (G\ setminus) - degatorname{dem} (G) $G)\leq 2$, 任何图形$G$和美元 ege $E( G) 。 此外, 约束是尖锐的。 下一步, 我们制作两张G$和$$( Oa) $$$_ G$( G) 以显示, 美元( G) 和 美元( O) 美元 (G_ del_ a. g) del- deal (G_ a.