The role of data in building AI systems has recently been significantly magnified by the emerging concept of data-centric AI (DCAI), which advocates a fundamental shift from model advancements to ensuring data quality and reliability. Although our community has continuously invested efforts into enhancing data in different aspects, they are often isolated initiatives on specific tasks. To facilitate the collective initiative in our community and push forward DCAI, we draw a big picture and bring together three general missions: training data development, evaluation data development, and data maintenance. We provide a top-level discussion on representative DCAI tasks and share perspectives. Finally, we list open challenges to motivate future exploration.


翻译:以数据为中心的AI(DCAI)的新概念最近大大扩大了数据在建立AI系统方面的作用,这个概念主张从根本上从示范进步转向确保数据质量和可靠性。虽然我们社区不断努力在不同方面加强数据,但它们往往是关于具体任务的孤立倡议。为了促进我们社区的集体倡议和推进AI(DCAI),我们绘制了一个大图,汇集了三个一般性任务:培训数据开发、评价数据开发和数据维护。我们就具有代表性的DCAI的任务和共享观点进行了最高级讨论。最后,我们列举了推动未来探索的公开挑战。

1
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
专知会员服务
124+阅读 · 2020年9月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
专知会员服务
124+阅读 · 2020年9月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员