Self-exciting spatiotemporal Hawkes processes have found increasing use in the study of large-scale public health threats ranging from gun violence and earthquakes to wildfires and viral contagion. Whereas many such applications feature locational uncertainty, i.e., the exact spatial positions of individual events are unknown, most Hawkes model analyses to date have ignored spatial coarsening present in the data. Three particular 21st century public health crises -- urban gun violence, rural wildfires and global viral spread -- present qualitatively and quantitatively varying uncertainty regimes that exhibit (a) different collective magnitudes of spatial coarsening, (b) uniform and mixed magnitude coarsening, (c) differently shaped uncertainty regions and -- less orthodox -- (d) locational data distributed within the `wrong' effective space. We explicitly model such uncertainties in a Bayesian manner and jointly infer unknown locations together with all parameters of a reasonably flexible Hawkes model, obtaining results that are practically and statistically distinct from those obtained while ignoring spatial coarsening. This work also features two different secondary contributions: first, to facilitate Bayesian inference of locations and background rate parameters, we make a subtle yet crucial change to an established kernel-based rate model; and second, to facilitate the same Bayesian inference at scale, we develop a massively parallel implementation of the model's log-likelihood gradient with respect to locations and thus avoid its quadratic computational cost in the context of Hamiltonian Monte Carlo. Our examples involve thousands of observations and allow us to demonstrate practicality at moderate scales.


翻译:在研究大规模公共卫生威胁时,从枪支暴力和地震到野火和病毒传染等大规模公共卫生威胁时,自我兴奋的瞬间霍克斯进程发现越来越多的使用大规模公共卫生威胁,从枪火暴力和地震到野火和病毒传染等,许多此类应用都以地点不确定性为特征,即个别事件的确切空间位置未知,而迄今为止大多数霍克斯模型分析忽视了数据中存在的空间混乱。三个特定的21世纪公共卫生危机 -- -- 城市枪支暴力、农村野火和全球病毒传播 -- -- 呈现了质量和数量上各不相同的不确定性制度,显示(a) 空间裂变、(b) 统一和混杂程度的裂变、(c) 不同程度的不确定性区域和 -- -- 不太正统 -- (d) 分布在“错误”有效空间内的定位数据。我们以拜斯方式明确模拟这种不确定性,共同推断出一个相当灵活的鹰角模型的所有参数,取得的结果与在统计上与获得的模型有区别,同时忽略空间裂变。 这项工作还有两种不同的次级贡献:首先,方便Bayesian对地点和背景变异的观测环境进行不同程度,因此,我们用一个精确的轨道比重的尺度来评估,因此,我们用一个精确的比标度的比标度的尺度,从而得出一个精确的比。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员