In this paper we address the computational feasibility of the class of decision theoretic models referred to as adversarial risk analyses (ARA). These are models where a decision must be made with consideration for how an intelligent adversary may behave and where the decision-making process of the adversary is unknown, and is elicited by analyzing the adversary's decision problem using priors on his utility function and beliefs. The motivation of this research was to develop a computational algorithm that can be applied across a broad range of ARA models; to the best of our knowledge, no such algorithm currently exists. Using a two-person sequential model, we incrementally increase the size of the model and develop a simulation-based approximation of the true optimum where an exact solution is computationally impractical. In particular, we begin with a relatively large decision space by considering a theoretically continuous space that must be discretized. Then, we incrementally increase the number of strategic objectives which causes the decision space to grow exponentially. The problem is exacerbated by the presence of an intelligent adversary who also must solve an exponentially large decision problem according to some unknown decision-making process. Nevertheless, using a stylized example that can be solved analytically we show that our algorithm not only solves large ARA models quickly but also accurately selects to the true optimal solution. Furthermore, the algorithm is sufficiently general that it can be applied to any ARA model with a large, yet finite, decision space.


翻译:在本文中,我们讨论了称为对抗性风险分析(ARA)的决定理论模型的计算可行性。这些模型是必须作出决定的模型,其中必须考虑智能对手的行为方式和对手的决策过程未知,并且通过使用其实用功能和信念的先验方法分析对手的抉择问题而得出。研究的动机是开发一种计算算法,可以适用于广泛的ARA模型;据我们所知,目前没有这种算法。使用两人相继模型,我们逐步增加模型的规模,并在精确的解决方案在计算上不切实际的情况下,对真正的最佳方法进行模拟近似。特别是,我们从一个相对大的决策空间开始,先考虑一个必须分解的理论连续性空间。然后,我们逐渐增加导致决策空间急剧增长的战略目标的数量。由于存在智能的对称,他们也必须根据一些未知的决策过程解决一个指数性巨大的决策问题。然而,我们使用一个基于模型的模拟模型,可以快速地模拟真实地近似最优的近似性模拟,我们只能以分析性的方式展示我们的最佳算法。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【经典书】机器学习导论,234页pdf
专知会员服务
76+阅读 · 2021年4月20日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
124+阅读 · 2020年9月8日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年12月20日
Arxiv
0+阅读 · 2021年12月17日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关VIP内容
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员