In recent years, numerical methods in industrial applications have evolved from a pure predictive tool towards a means for optimization and control. Since standard numerical analysis methods have become prohibitively costly in such multi-query settings, a variety of reduced order modeling (ROM) approaches have been advanced towards complex applications. In this context, the driving application for this work is twin-screw extruders (TSEs): manufacturing devices with an important economic role in plastics processing. Modeling the flow through a TSE requires non-linear material models and coupling with the heat equation alongside intricate mesh deformations, which is a comparatively complex scenario. We investigate how a non-intrusive, data-driven ROM can be constructed for this application. We focus on the well-established proper orthogonal decomposition (POD) with regression albeit we introduce two adaptations: standardizing both the data and the error measures as well as -- inspired by our space-time simulations -- treating time as a discrete coordinate rather than a continuous parameter. We show that these steps make the POD-regression framework more interpretable, computationally efficient, and problem-independent. We proceed to compare the performance of three different regression models: Radial basis function (RBF) regression, Gaussian process regression (GPR), and artificial neural networks (ANNs). We find that GPR offers several advantages over an ANN, constituting a viable and computationally inexpensive non-intrusive ROM. Additionally, the framework is open-sourced to serve as a starting point for other practitioners and facilitate the use of ROM in general engineering workflows.


翻译:近年来,工业应用的数字方法从纯粹的预测工具演变为优化和控制手段。标准的数字分析方法在这种多拼盘环境下已经变得高得令人望而却步,因此,由于标准的数字分析方法在这种多拼盘环境下已经变得过于昂贵,因此,各种减少订单模型(ROM)的方法已经向复杂的应用程序发展。在这方面,这项工作的驱动应用是双层螺旋式挤压机(TSE):在塑料加工中具有重要经济作用的制造装置(TSE):模拟通过TSE的流程需要非线性材料模型,并与热方相配合,而复杂的网状变形变形则是一个相对复杂的场景。我们调查如何为这种应用程序建造非侵入性、数据驱动型的ROM(ROM),我们侧重于已经确立的正确或分解式变形的模型(POD),尽管我们引入了两种调整:标准化的数据和误差计量方法,以及 -- -- 受我们的时空模拟的启发 -- -- 将时间视为一种离式的协调,而不是持续的参数。我们表明,这些步骤使得POD-递反变框架更加易解释、计算、计算、计算、计算法化、分析式的RBRA- 一种不同的递化、一种不同的递化模型的周期、一种不同的递进化、一种不同的递化、一种不同的递化、一种不同的递化的递进式的周期性能。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年6月11日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员