We construct $3$-query relaxed locally decodable codes (RLDCs) with constant alphabet size and length $\tilde{O}(k^2)$ for $k$-bit messages. Combined with the lower bound of $\tildeΩ(k^3)$ of [Alrabiah, Guruswami, Kothari, Manohar, STOC 2023] on the length of locally decodable codes (LDCs) with the same parameters, we obtain a separation between RLDCs and LDCs, resolving an open problem of [Ben-Sasson, Goldreich, Harsha, Sudan and Vadhan, SICOMP 2006]. Our RLDC construction relies on two components. First, we give a new construction of probabilistically checkable proofs of proximity (PCPPs) with $3$ queries, quasi-linear size, constant alphabet size, perfect completeness, and small soundness error. This improves upon all previous PCPP constructions, which either had a much higher query complexity or soundness close to $1$. Second, we give a query-preserving transformation from PCPPs to RLDCs. At the heart of our PCPP construction is a $2$-query decodable PCP (dPCP) with matching parameters, and our construction builds on the HDX-based PCP of [Bafna, Minzer, Vyas, Yun, STOC 2025] and on the efficient composition framework of [Moshkovitz, Raz, JACM 2010] and [Dinur, Harsha, SICOMP 2013]. More specifically, we first show how to use the HDX-based construction to get a dPCP with matching parameters but a large alphabet size, and then prove an appropriate composition theorem (and related transformations) to reduce the alphabet size in dPCPs.
翻译:我们构造了针对k比特消息、具有常数字母表大小和长度$\tilde{O}(k^2)$的3-查询松弛局部可解码码(RLDC)。结合[Alrabiah, Guruswami, Kothari, Manohar, STOC 2023]关于相同参数下局部可解码码(LDC)长度下界$\tilde{\Omega}(k^3)$的结果,我们获得了RLDC与LDC之间的分离,解决了[Ben-Sasson, Goldreich, Harsha, Sudan and Vadhan, SICOMP 2006]提出的一个开放问题。我们的RLDC构造依赖于两个组成部分。首先,我们给出了一种新的3-查询概率可检查邻近证明(PCPP)构造,该构造具有拟线性规模、常数字母表大小、完美完备性和较小的可靠性误差。这改进了所有先前的PCPP构造,后者要么具有更高的查询复杂度,要么可靠性接近1。其次,我们给出了一种从PCPP到RLDC的查询保持转换。我们PCPP构造的核心是一个具有匹配参数的2-查询可解码PCP(dPCP),该构造基于[Bafna, Minzer, Vyas, Yun, STOC 2025]的基于HDX的PCP,以及[Moshkovitz, Raz, JACM 2010]和[Dinur, Harsha, SICOMP 2013]的高效组合框架。具体而言,我们首先展示了如何利用基于HDX的构造获得具有匹配参数但较大字母表大小的dPCP,随后证明了适当的组合定理(及相关转换)以降低dPCP的字母表大小。