We combine several recent advancements to solve $(1+\varepsilon)$-transshipment and $(1+\varepsilon)$-maximum flow with a parallel algorithm with $\tilde{O}(1/\varepsilon)$ depth and $\tilde{O}(m/\varepsilon)$ work. We achieve this by developing and deploying suitable parallel linear cost approximators in conjunction with an accelerated continuous optimization framework known as the box-simplex game by Jambulapati et al. (ICALP 2022). A linear cost approximator is a linear operator that allows us to efficiently estimate the cost of the optimal solution to a given routing problem. Obtaining accelerated $\varepsilon$ dependencies for both problems requires developing a stronger multicommodity cost approximator, one where cancellations between different commodities are disallowed. For maximum flow, we observe that a recent linear cost approximator due to Agarwal et al. (SODA 2024) can be augmented with additional parallel operations and achieve $\varepsilon^{-1}$ dependency via the box-simplex game. For transshipment, we also obtain construct a deterministic and distributed approximator. This yields a deterministic CONGEST algorithm that requires $\tilde{O}(\varepsilon^{-1}(D + \sqrt{n}))$ rounds on general networks of hop diameter $D$ and $\tilde{O}(\varepsilon^{-1}D)$ rounds on minor-free networks to compute a $(1+\varepsilon)$-approximation.


翻译:我们整合了多项最新进展,通过一种并行算法解决了$(1+\varepsilon)$-转运问题与$(1+\varepsilon)$-最大流问题,该算法具有$\tilde{O}(1/\varepsilon)$的深度与$\tilde{O}(m/\varepsilon)$的工作量。我们通过开发并部署合适的并行线性成本近似器,结合由Jambulapati等人(ICALP 2022)提出的加速连续优化框架——盒单纯形博弈,实现了这一目标。线性成本近似器是一种线性算子,使我们能够高效估计给定路由问题最优解的成本。为这两个问题获得加速的$\varepsilon$依赖关系,需要开发一种更强的多商品成本近似器,其中禁止不同商品之间的抵消操作。对于最大流问题,我们观察到Agarwal等人(SODA 2024)最近提出的线性成本近似器可通过附加的并行操作进行增强,并借助盒单纯形博弈实现$\varepsilon^{-1}$的依赖关系。对于转运问题,我们还构建了一个确定性的分布式近似器。这产生了一种确定性CONGEST算法,在跳数直径为$D$的一般网络上需要$\tilde{O}(\varepsilon^{-1}(D + \sqrt{n}))$轮次,在无minor网络上需要$\tilde{O}(\varepsilon^{-1}D)$轮次来计算$(1+\varepsilon)$-近似解。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员