A $(k+r,k,l)$ binary array code of length $k+r$, dimension $k$, and sub-packetization $l$ is composed of $l\times(k+r)$ matrices over $\mathbb{F}_2$, with every column of the matrix stored on a separate node in the distributed storage system and viewed as a coordinate of the codeword. It is said to be maximum distance separable (MDS) if any $k$ out of $k+r$ coordinates suffice to reconstruct the whole codeword. The repair problem of binary MDS array codes has drawn much attention, particularly for single-node failures. In this paper, given an arbitrary binary MDS array code with sub-packetization $m$ as the base code, we propose two generic approaches (Generic Construction I and II) for constructing binary MDS array codes with optimal access (or repair) bandwidth for single-node failures. For every $s\leq r$, a $(k+r,k,ms^{\lceil \frac{k+r}{s}\rceil})$ code $\mathcal{C}_1$ with optimal access bandwidth can be constructed by Generic Construction I. Repairing a failed node of $\mathcal{C}_1$ requires connecting to $d = k+s-1$ helper nodes, in which $s-1$ helper nodes are designated and $k$ are free to select. $\mathcal{C}_1$ generally achieves smaller sub-packetization and provides greater flexibility in the selection of its coefficient matrices. For even $r\geq4$ and $s=\frac{r}{2}$ such that $s+1$ divides $k+r$, a $(k+r, k,ms^{\frac{k+r}{s+1}})$ code $\mathcal{C}_2$ with optimal repair bandwidth can be constructed by Generic Construction II, with $\frac{s}{s+1}(k+r)$ out of $k+r$ nodes having the optimal access property. To the best of our knowledge, $\mathcal{C}_2$ possesses the smallest sub-packetization among existing binary MDS array codes with optimal repair bandwidth known to date.
翻译:一个$(k+r,k,l)$二进制阵列码,其长度为$k+r$,维度为$k$,子分组化为$l$,由$\mathbb{F}_2$上的$l\times(k+r)$矩阵组成,矩阵的每一列存储在分布式存储系统的不同节点上,并被视为码字的一个坐标。如果任意$k$个坐标足以重构整个码字,则称其为最大距离可分(MDS)码。二进制MDS阵列码的修复问题引起了广泛关注,特别是针对单节点故障。本文中,给定一个具有子分组化$m$的任意二进制MDS阵列码作为基码,我们提出了两种通用方法(通用构造I和II)来构造针对单节点故障具有最优访问(或修复)带宽的二进制MDS阵列码。对于每个$s\leq r$,可以通过通用构造I构造一个具有最优访问带宽的$(k+r,k,ms^{\lceil \frac{k+r}{s}\rceil})$码$\mathcal{C}_1$。修复$\mathcal{C}_1$的一个故障节点需要连接到$d = k+s-1$个辅助节点,其中$s-1$个辅助节点是指定的,$k$个可以自由选择。$\mathcal{C}_1$通常实现了更小的子分组化,并在其系数矩阵的选择上提供了更大的灵活性。对于偶数$r\geq4$和$s=\frac{r}{2}$,使得$s+1$整除$k+r$,可以通过通用构造II构造一个具有最优修复带宽的$(k+r, k,ms^{\frac{k+r}{s+1}})$码$\mathcal{C}_2$,其中$k+r$个节点中有$\frac{s}{s+1}(k+r)$个具有最优访问特性。据我们所知,$\mathcal{C}_2$在目前已知的具有最优修复带宽的二进制MDS阵列码中拥有最小的子分组化。