Generating ground states of any local Hamiltonians seems to be impossible in quantum polynomial time. In this paper, we give evidence for the impossibility by applying an argument used in the quantum-computational-supremacy approach. More precisely, we show that if ground states of any $3$-local Hamiltonians can be approximately generated in quantum polynomial time with postselection, then ${\sf PP}={\sf PSPACE}$. Our result is superior to the existing findings in the sense that we reduce the impossibility to an unlikely relation between classical complexity classes. We also discuss what makes efficiently generating the ground states hard for postselected quantum computation.
翻译:任何本地的汉密尔顿人的地面状态在量子多元时似乎都不可能产生。 在本文中,我们通过应用量子计算最高方法中所使用的论据来证明不可能。 更准确地说,我们表明,如果任何本地的3美元的汉密尔顿人的地面状态在后选后以量子多元时可以大致产生,那么美元就是美元。我们的结果优于现有的调查结果,因为我们把不可能的情况降低到传统复杂等级之间不可能发生的关系。我们还讨论了是什么使得有效产生地面的原因使得在后选后进行量子计算时很难做到。