We study a natural extension to the well-known convex hull problem by introducing multiplicity: if we are given a set of convex polygons, and we are allowed to partition the set into multiple components and take the convex hull of each individual component, what is the minimum total sum of the perimeters of the convex hulls? We show why this problem is intriguing, and then introduce a novel algorithm with a run-time cubic in the total number of vertices. In the case that the input polygons are disjoint, we show an optimization that achieves a run-time that, in most cases, is cubic in the total number of polygons, within a logarithmic factor.


翻译:我们通过引入多重性来研究众所周知的锥形船体问题的自然延伸:如果我们得到一套锥形多边形,并且我们被允许将组装分成多个组成部分,并采取每个组成部分的锥形船体,那么锥形船体周围的最小总和是多少?我们说明为什么这个问题令人感兴趣,然后在脊椎的总数中引入一种带有运行时立立方的新型算法。如果输入多边形是脱节的,我们则展示一种优化,实现运行时间,在多数情况下,在逻辑系数范围内,在多边形的总数中是立方的。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
【硬核书】群论,Group Theory,135页pdf
专知会员服务
124+阅读 · 2020年6月25日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月21日
Arxiv
0+阅读 · 2021年1月20日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
Top
微信扫码咨询专知VIP会员