Neural population activity exhibits complex, nonlinear dynamics, varying in time, over trials, and across experimental conditions. Here, we develop Conditionally Linear Dynamical System (CLDS) models as a general-purpose method to characterize these dynamics. These models use Gaussian Process (GP) priors to capture the nonlinear dependence of circuit dynamics on task and behavioral variables. Conditioned on these covariates, the data is modeled with linear dynamics. This allows for transparent interpretation and tractable Bayesian inference. We find that CLDS models can perform well even in severely data-limited regimes (e.g. one trial per condition) due to their Bayesian formulation and ability to share statistical power across nearby task conditions. In example applications, we apply CLDS to model thalamic neurons that nonlinearly encode heading direction and to model motor cortical neurons during a cued reaching task.
翻译:神经群体活动表现出复杂、非线性的动态特性,这些特性随时间、跨试验周期以及不同实验条件而变化。本文提出条件线性动态系统(CLDS)模型作为一种通用方法,用于刻画这些动态过程。该模型采用高斯过程(GP)先验来捕捉神经回路动态对任务和行为变量的非线性依赖关系。在给定这些协变量的条件下,数据通过线性动态系统进行建模。这一框架既保证了模型的可解释性,又实现了可处理的贝叶斯推断。研究发现,得益于其贝叶斯建模框架以及跨邻近任务条件共享统计效能的能力,CLDS模型即使在严重数据受限的场景(例如每个条件仅单次试验)中仍能保持优异性能。在示例应用中,我们运用CLDS模型对非线性编码头部朝向的丘脑神经元进行建模,并在提示性伸手任务中对运动皮层神经元进行动态表征。