Dialogue systems pretrained with large language models generate locally coherent responses, but lack the fine-grained control over responses necessary to achieve specific goals. A promising method to control response generation is exemplar-based generation, in which models edit exemplar responses that are retrieved from training data, or hand-written to strategically address discourse-level goals, to fit new dialogue contexts. But, current exemplar-based approaches often excessively copy words from the exemplar responses, leading to incoherent replies. We present an Exemplar-based Dialogue Generation model, EDGE, that uses the semantic frames present in exemplar responses to guide generation. We show that controlling dialogue generation based on the semantic frames of exemplars, rather than words in the exemplar itself, improves the coherence of generated responses, while preserving semantic meaning and conversation goals present in exemplar responses.


翻译:在经过大型语言模型培训后的对话系统生成了本地一致的响应,但缺乏对实现具体目标所需响应的精细控制。 控制响应生成的一个有希望的方法就是以实例为基础的生成,其中模型编辑从培训数据中提取的示范响应,或手写用于战略应对对话层面的目标,以适应新的对话背景。但是,目前的示范性方法往往过度复制实例响应中的单词,导致不连贯的响应。我们提出了一个基于实例的对话生成模型,即EDGE, 使用示范响应中存在的语义框架来指导生成。我们表明,控制基于外观的语义框架而不是外观本身的文字的对话生成,可以提高生成响应的一致性,同时保留前文响应中存在的语义含义和谈话目标。

0
下载
关闭预览

相关内容

专知会员服务
55+阅读 · 2021年5月10日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员