Dialogue systems pretrained with large language models generate locally coherent responses, but lack the fine-grained control over responses necessary to achieve specific goals. A promising method to control response generation is exemplar-based generation, in which models edit exemplar responses that are retrieved from training data, or hand-written to strategically address discourse-level goals, to fit new dialogue contexts. But, current exemplar-based approaches often excessively copy words from the exemplar responses, leading to incoherent replies. We present an Exemplar-based Dialogue Generation model, EDGE, that uses the semantic frames present in exemplar responses to guide generation. We show that controlling dialogue generation based on the semantic frames of exemplars, rather than words in the exemplar itself, improves the coherence of generated responses, while preserving semantic meaning and conversation goals present in exemplar responses.
翻译:在经过大型语言模型培训后的对话系统生成了本地一致的响应,但缺乏对实现具体目标所需响应的精细控制。 控制响应生成的一个有希望的方法就是以实例为基础的生成,其中模型编辑从培训数据中提取的示范响应,或手写用于战略应对对话层面的目标,以适应新的对话背景。但是,目前的示范性方法往往过度复制实例响应中的单词,导致不连贯的响应。我们提出了一个基于实例的对话生成模型,即EDGE, 使用示范响应中存在的语义框架来指导生成。我们表明,控制基于外观的语义框架而不是外观本身的文字的对话生成,可以提高生成响应的一致性,同时保留前文响应中存在的语义含义和谈话目标。