Data availability (DA) attack is a well-known problem in certain blockchains where users accept an invalid block with unavailable portions. Previous works have used LDPC and 2-D Reed Solomon (2DRS) codes with Merkle trees to mitigate DA attacks. These codes perform well across various metrics such as DA detection probability and communication cost. However, these codes are difficult to apply to blockchains with large blocks due to large decoding complexity and coding fraud proof size (2D-RS codes), and intractable code guarantees for large code lengths (LDPC codes). In this paper, we focus on large block size applications and address the above challenges by proposing the novel Polar Coded Merkle Tree (PCMT): a Merkle tree encoded using the encoding graph of polar codes. We provide a specialized polar code design algorithm called Sampling Efficient Freezing and an algorithm to prune the polar encoding graph. We demonstrate that the PCMT built using the above techniques results in a better DA detection probability and communication cost compared to LDPC codes, has a lower coding fraud proof size compared to LDPC and 2D-RS codes, provides tractable code guarantees at large code lengths (similar to 2D-RS codes), and has comparable decoding complexity to 2D-RS and LDPC codes.


翻译:在某些块链中,用户接受一个没有部件的无效区块。 先前的作品使用LDPC 和 2D Reed Solomon (2DRS) 代码与Merkle 树使用LDPC 和 2D Reed Solomon (2DRS) 代码来减轻DA 袭击。 这些代码在诸如DA 检测概率和通信成本等各种指标中表现良好。 然而,由于大量解码复杂度和编码欺诈证明尺寸(2D-RS 代码),以及大代码长度(LDPC 代码)的代码保障(LDPC 代码),这些代码很难适用于大块块的区块块块。 在本文中,我们侧重于大型区块应用大型区块应用程序,并应对上述挑战,为此提出了新的极地码码码码码码码码码(PCMMT):用极码编码编码编码编码编码编码的Merkleklekle 树。 我们提供了一个专门的极地码设计算法算法算法算法,称为Smilling 节码(S-DD) 至大码的比LD-DDD码的码。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
0+阅读 · 2023年3月11日
Arxiv
0+阅读 · 2023年3月11日
Arxiv
0+阅读 · 2023年3月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员