SOTA Transformer and DNN short text sentiment classifiers report over 97% accuracy on narrow domains like IMDB movie reviews. Real-world performance is significantly lower because traditional models overfit benchmarks and generalize poorly to different or more open domain texts. This paper introduces SentimentArcs, a new self-supervised time series sentiment analysis methodology that addresses the two main limitations of traditional supervised sentiment analysis: limited labeled training datasets and poor generalization. A large ensemble of diverse models provides a synthetic ground truth for self-supervised learning. Novel metrics jointly optimize an exhaustive search across every possible corpus:model combination. The joint optimization over both the corpus and model solves the generalization problem. Simple visualizations exploit the temporal structure in narratives so domain experts can quickly spot trends, identify key features, and note anomalies over hundreds of arcs and millions of data points. To our knowledge, this is the first self-supervised method for time series sentiment analysis and the largest survey directly comparing real-world model performance on long-form narratives.
翻译:SONTA 变换器和 DNN 短文本感知分类器报告在IMDB 电影评论等狭义领域超过97%的精确度。 真实世界的性能要低得多, 因为传统模型比基准高, 并且对不同或更开放的域文本进行一般化。 本文介绍SentimmentArcs, 这是一种新的自我监督时间序列感知分析方法, 解决传统感知分析的两个主要局限性: 标签有限的培训数据集和简略化。 大量不同的模型为自我监督的学习提供了合成地面真象。 大量不同的模型为时间序列感知分析提供了一种合成的合成地面真象。 最新指标联合优化了对每个可能的系统( 模范组合) 的彻底搜索 。 对物质和模型的联合优化解决了一般化问题 。 简单视觉化在叙述中利用时间结构, 以便域专家能够快速辨别趋势、 识别关键特征和注意到数百个弧和数百万个数据点的异常现象。 据我们所知, 这是时间序列感知, 这是第一种自我超强的方法, 并直接比较长式叙述实际世界模型表现的最大调查。