Keyphrase generation aims at generating phrases (keyphrases) that best describe a given document. In scholarly domains, current approaches to this task are neural approaches and have largely worked with only the title and abstract of the articles. In this work, we explore whether the integration of additional data from semantically similar articles or from the full text of the given article can be helpful for a neural keyphrase generation model. We discover that adding sentences from the full text particularly in the form of summary of the article can significantly improve the generation of both types of keyphrases that are either present or absent from the title and abstract. The experimental results on the three acclaimed models along with one of the latest transformer models suitable for longer documents, Longformer Encoder-Decoder (LED) validate the observation. We also present a new large-scale scholarly dataset FullTextKP for keyphrase generation, which we use for our experiments. Unlike prior large-scale datasets, FullTextKP includes the full text of the articles alongside title and abstract. We will release the source code to stimulate research on the proposed ideas.
翻译:关键词生成旨在生成最能描述给定文件的词句( 关键词句 ) 。 在学术领域, 目前的任务方法是神经学方法, 并且基本上只使用条款的标题和摘要。 在这项工作中, 我们探讨从语义上相似的条款或从给定条款全文中补充数据是否有助于神经关键词生成模型。 我们发现, 从全文中添加句子, 特别是以文章摘要的形式添加句子, 可以大大改进两种类型关键词句的生成, 无论是在标题和抽象中存在还是不存在。 三个被命名的模型的实验结果, 以及适合较长文档的最新变异器模型之一, 长的 Encorder- Decoder (LED) 验证了观察结果。 我们还为关键词生成提供了一个新的大规模学术数据集全TextKP, 用于我们的实验。 与以前的大型数据集不同, FullTextKP 包括标题和抽象文章的全文。 我们将发布源代码, 以刺激对拟议想法的研究 。