Keyphrase generation aims at generating phrases (keyphrases) that best describe a given document. In scholarly domains, current approaches to this task are neural approaches and have largely worked with only the title and abstract of the articles. In this work, we explore whether the integration of additional data from semantically similar articles or from the full text of the given article can be helpful for a neural keyphrase generation model. We discover that adding sentences from the full text particularly in the form of summary of the article can significantly improve the generation of both types of keyphrases that are either present or absent from the title and abstract. The experimental results on the three acclaimed models along with one of the latest transformer models suitable for longer documents, Longformer Encoder-Decoder (LED) validate the observation. We also present a new large-scale scholarly dataset FullTextKP for keyphrase generation, which we use for our experiments. Unlike prior large-scale datasets, FullTextKP includes the full text of the articles alongside title and abstract. We will release the source code to stimulate research on the proposed ideas.


翻译:关键词生成旨在生成最能描述给定文件的词句( 关键词句 ) 。 在学术领域, 目前的任务方法是神经学方法, 并且基本上只使用条款的标题和摘要。 在这项工作中, 我们探讨从语义上相似的条款或从给定条款全文中补充数据是否有助于神经关键词生成模型。 我们发现, 从全文中添加句子, 特别是以文章摘要的形式添加句子, 可以大大改进两种类型关键词句的生成, 无论是在标题和抽象中存在还是不存在。 三个被命名的模型的实验结果, 以及适合较长文档的最新变异器模型之一, 长的 Encorder- Decoder (LED) 验证了观察结果。 我们还为关键词生成提供了一个新的大规模学术数据集全TextKP, 用于我们的实验。 与以前的大型数据集不同, FullTextKP 包括标题和抽象文章的全文。 我们将发布源代码, 以刺激对拟议想法的研究 。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【综述】关键词生成,附10页pdf论文下载
专知会员服务
52+阅读 · 2019年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
论文浅尝 | EARL: Joint Entity and Relation Linking for QA over KG
开放知识图谱
6+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
6+阅读 · 2019年3月19日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
7+阅读 · 2018年4月21日
VIP会员
相关VIP内容
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【综述】关键词生成,附10页pdf论文下载
专知会员服务
52+阅读 · 2019年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Top
微信扫码咨询专知VIP会员