The group synchronization problem involves estimating a collection of group elements from noisy measurements of their pairwise ratios. This task is a key component in many computational problems, including the molecular reconstruction problem in single-particle cryo-electron microscopy (cryo-EM). The standard methods to estimate the group elements are based on iteratively applying linear and non-linear operators, and are not necessarily optimal. Motivated by the structural similarity to deep neural networks, we adopt the concept of algorithm unrolling, where training data is used to optimize the algorithm. We design unrolled algorithms for several group synchronization instances, including synchronization over the group of 3-D rotations: the synchronization problem in cryo-EM. We also apply a similar approach to the multi-reference alignment problem. We show by numerical experiments that the unrolling strategy outperforms existing synchronization algorithms in a wide variety of scenarios.
翻译:组同步问题涉及从对称比率的杂乱测量中估算一组元素的集合。 这项任务是许多计算问题的一个关键组成部分, 包括单粒子冷冻- 电子显微镜( cryo- EM) 中的分子重建问题。 用于估计组元素的标准方法基于迭接应用线性和非线性操作员, 不一定是最佳的。 我们受深神经网络结构相似性的影响, 我们采用了算法解动概念, 使用培训数据优化算法。 我们为多个组同步实例设计了无滚动算法, 包括三维旋转组的同步性: 冷冻- EM 的同步性问题。 我们还对多参照性对齐问题采用了类似的方法。 我们通过数字实验显示, 解动战略在各种情景中超越了现有的同步算法。