Making the gradients small is a fundamental optimization problem that has eluded unifying and simple convergence arguments in first-order optimization, so far primarily reserved for other convergence criteria, such as reducing the optimality gap. We introduce a novel potential function-based framework to study the convergence of standard methods for making the gradients small in smooth convex optimization and convex-concave min-max optimization. Our framework is intuitive and it provides a lens for viewing algorithms that make the gradients small as being driven by a trade-off between reducing either the gradient norm or a certain notion of an optimality gap. On the lower bounds side, we discuss tightness of the obtained convergence results for the convex setup and provide a new lower bound for minimizing norm of cocoercive operators that allows us to argue about optimality of methods in the min-max setup.
翻译:使梯度小化是一个根本的优化问题,在第一阶优化中,没有统一和简单的趋同论点,迄今为止主要保留在其他趋同标准上,例如缩小最佳性差距。我们引入了一个新的基于功能的潜在框架,以研究使梯度小化的标准方法的趋同方法的趋同方法的趋同方法,即平滑的二次曲线优化和卷轴微轴优化。我们的框架是直观的,它提供了一个观察算法的透镜,这种算法使梯度小化,成为在降低梯度规范或某种最佳性差距概念之间的权衡取舍。 在下界方面,我们讨论了为螺旋形设置所取得的趋同结果的紧凑性,并为尽量减少共振操作者规范提供了新的较低约束,使我们能够就微轴构造中方法的最佳性进行争论。