Ordinary differential equation (ODE) is a mathematical model for dynamical systems. For its intuitive appeal to modelling, the ODE is used in many application areas such as climatology, bioinformatics, disease modelling and chemical engineering. Despite ODE's wide usage in modelling, there are difficulties in estimating ODE parameters from the data due to frequent absence of their analytic solutions. The ODE model typically requires enormous computing time and shows poor performance in estimation especially when the model has a lot of variables and parameters. This paper proposes a Bayesian ODE parameter estimating algorithm which is fast and accurate even for models with many parameters. The proposed method approximates an ODE model with a state-space model based on equations of a numeric solver. It allows fast estimation by avoiding computations of a whole numerical solution in the likelihood. The posterior is obtained by a variational Bayes method, more specifically, the \textit{approximate Riemannian conjugate gradient method} \cite**{honkela2010approximate}, which avoids samplings based on Markov chain Monte Carlo (MCMC). In simulation studies we compared the speed and performance of proposed method with existing methods. The proposed method showed the best performance in the reproduction of the true ODE curve with strong stability as well as the fastest computation, especially in a large model with more than 30 parameters. As a real-world data application a SIR model with time-varying parameters was fitted to the COVID-19 data. Taking advantage of our proposed algorithm, 30 parameters were adequately fitted for each country.


翻译:普通差分方程式( ODE) 是动态系统的数学模型。 对于对模型的直觉吸引力, 运行规则用于许多应用领域, 如气候学、 生物信息学、 疾病建模和化学工程等。 尽管在建模中使用了ODE, 但由于经常缺乏分析解决方案, 很难从数据中估计运行规则参数。 运行规则模型通常需要巨大的计算时间, 并且显示在估算中表现不佳, 特别是当模型有许多变量和参数时。 本文提议Bayesian 参数估算算法快速和准确, 甚至对于具有多种参数的模型也是如此。 拟议的方法将基于数字求解器方程式方程式的状态空间模型近似于一个状态- 模式模型模型。 它使得通过避免计算整个数字解决方案的可能性而快速估算ODE参数有困难。 星座模型通常需要巨大的计算时间, 更具体地说, 模型是Riemannian conjugate 梯度 方法 }\ cite- honkela- 2010aplobilt} 。 提议的方法避免在Markov 链 系统 中取样,, 和 30Carlotal 数据 的计算方法的每个运行 都用最强的计算方法, 展示 。 显示我们 的进度方法 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月11日
Arxiv
0+阅读 · 2021年1月10日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员