The COVID-19 epidemic is the last of a long list of pandemics that have affected humankind in the last century. In this paper, we propose a novel mathematical epidemiological model named SUIHTER from the names of the seven compartments that it comprises: susceptible uninfected individuals (S), undetected (both asymptomatic and symptomatic) infected (U), isolated (I), hospitalized (H), threatened (T), extinct (E), and recovered (R). A suitable parameter calibration that is based on the combined use of least squares method and Markov Chain Monte Carlo (MCMC) method is proposed with the aim of reproducing the past history of the epidemic in Italy, surfaced in late February and still ongoing to date, and of validating SUIHTER in terms of its predicting capabilities. A distinctive feature of the new model is that it allows a one-to-one calibration strategy between the model compartments and the data that are daily made available from the Italian Civil Protection. The new model is then applied to the analysis of the Italian epidemic with emphasis on the second outbreak emerged in Fall 2020. In particular, we show that the epidemiological model SUIHTER can be suitably used in a predictive manner to perform scenario analysis at national level.
翻译:COVID-19流行病是上个世纪影响人类的一长串流行病的最后一个。在本文中,我们从由以下七个组成部分组成的七个组成部分的名称中提议了一个名为SUIHTER的新型数学流行病学模型:易受感染的未感染者(S),未发现(无症状和症状)感染者(U)、孤立(I)、住院(H)、威胁(T)、绝种(E)和回收(R)的(COVID-19)流行病)。根据最小方块法和Markov链链链蒙特卡洛(MCMC)方法的结合使用,提出了适当的参数校准。然后,提出了一种适当的参数校准,目的是要重新生成意大利流行病的过去历史,该流行病在2月下旬出现,至今仍在持续,并且从预测能力的角度验证SUIHTER。新模型的一个特征是,它允许在模型和意大利公民保护每天提供的数据之间采用一对一校准战略。然后,新的模型应用于意大利流行病的分析,重点是2020年秋季爆发的第二次爆发。我们特别地展示了国家流行病学模型的预测。