People today typically use multiple online social networks (Facebook, Twitter, Google+, LinkedIn, etc.). Each online network represents a subset of their "real" ego-networks. An interesting and challenging problem is to reconcile these online networks, that is, to identify all the accounts belonging to the same individual. Besides providing a richer understanding of social dynamics, the problem has a number of practical applications. At first sight, this problem appears algorithmically challenging. Fortunately, a small fraction of individuals explicitly link their accounts across multiple networks; our work leverages these connections to identify a very large fraction of the network. Our main contributions are to mathematically formalize the problem for the first time, and to design a simple, local, and efficient parallel algorithm to solve it. We are able to prove strong theoretical guarantees on the algorithm's performance on well-established network models (Random Graphs, Preferential Attachment). We also experimentally confirm the effectiveness of the algorithm on synthetic and real social network data sets.


翻译:如今,人们通常使用多个在线社交网络(Facebook、Twitter、Google+、LinkedIn等)。每个在线网络代表着他们“真实”的自我网络的子集。一个有趣而具有挑战性的问题是调和这些在线网络,即识别属于同一个人的所有账户。这个问题除了提供对社会动态的更丰富了解外,还具有若干实际应用。乍看起来,这个问题似乎具有逻辑上的挑战性。幸运的是,一小部分个人在多个网络之间明确连接他们的账户;我们的工作利用这些连接来识别网络的非常大的一部分。我们的主要贡献是在数学上首次将问题正式化,并设计一个简单的、本地的和高效的平行算法来解决这个问题。我们能够证明在完善的网络模型(兰多图、优惠附件)上对算法的性表现有很强的理论保障。我们还实验性地确认合成和真实的社会网络数据集的算法的有效性。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员