Modeling the unusual mechanical properties of metamaterials is a challenging topic for the mechanics community and enriched continuum theories are promising computational tools for such materials. The so-called relaxed micromorphic model has shown many advantages in this field. In this contribution, we present the significant aspects related to the relaxed micromorphic model realization with the finite element method. The variational problem is derived and different FEM-formulations for the two-dimensional case are presented. These are a nodal standard formulation $H^1({\cal B}) \times H^1({\cal B})$ and a nodal-edge formulation $H^1({\cal B}) \times H(\operatorname{curl}, {\cal B})$, where the latter employs the N\'ed\'elec space. However, the implementation of higher-order N\'ed\'elec elements is not trivial and requires some technicalities which are demonstrated. We discuss the convergence behavior of Lagrange-type and tangential-conforming finite element discretizations. Moreover, we analyze the characteristic length effect on the different components of the model and reveal how the size-effect property is captured via this characteristic length.
翻译:对机械界来说,模拟元材料的异常机械特性是一个具有挑战性的主题,丰富的连续理论是这类材料的极佳计算工具。所谓的放松微形态模型在这一领域显示了许多优势。在这个贡献中,我们介绍了与通过有限元素法实现放松微形态模型有关的重要方面。产生了变异问题,提出了二维案例不同的FEM公式。这是一个节点标准配方$H1(xcal B})\times H1(cal B})$(xcal B})和节点-前置配方$H1(xcal B})\time H(cratorname{croll},hcal B})$。此外,我们分析了后者使用N\'ed\'eleca 空间的地方,后者使用N\'ed\'elecalec 空间。但是,较高顺序的N\'ed\'elec要素的实施并非微不足道,需要证明一些技术性因素。我们讨论了Lagrange型和相近相对立的固定元素分立的分立元化分解的组合的组合。此外,我们分析了该模型的特性通过不同尺寸的特性的长度影响如何揭示了这一特性。