We study scattering by a high aspect ratio particle using boundary integral equation methods. This problem has important applications in nanophotonics problems, including sensing and plasmonic imaging. To illustrate the effect of parity and the need for adapted methods in presence of high aspect ratio particles, we consider the scattering in two dimensions by a sound-hard, high aspect ratio ellipse. This fundamental problem highlights the main challenge and provide valuable insights to tackle plasmonic problems and general high aspect ratio particles. For this problem, we find that the boundary integral operator is nearly singular due to the collapsing geometry from an ellipse to a line segment. We show that this nearly singular behavior leads to qualitatively different asymptotic behaviors for solutions with different parities. Without explicitly taking this nearly singular behavior and this parity into account, computed solutions incur a large error. To address these challenges, we introduce a new method called Quadrature by Parity Asymptotic eXpansions (QPAX) that effectively and efficiently addresses these issues. We first develop QPAX to solve the Dirichlet problem for Laplace's equation in a high aspect ratio ellipse. Then, we extend QPAX for scattering by a sound-hard, high aspect ratio ellipse. We demonstrate the effectiveness of QPAX through several numerical examples.
翻译:我们用界分方程方法研究高端比例粒子的散射。 这个问题在纳米光谱问题中有着重要的应用, 包括感测和质谱成像。 为了说明等同效应的影响和在高端比例粒子存在的情况下需要调整方法, 我们认为, 由声硬高端比例椭圆体在两个维度上散射。 这个根本问题凸显了主要挑战, 提供了宝贵的洞见, 以解决质谱问题和一般高度比例粒子。 对于这个问题, 我们发现, 界分集操作器由于从椭圆到线段的崩溃几何分法而几乎是独一无二的。 我们发现, 这种几乎奇特的行为导致对不同等分法的解决方案在质量上不同、 等同行为。 没有明确考虑到这种近乎单一的行为和这种等等同性, 计算解决方案会产生很大的错误。 为了应对这些挑战, 我们引入了一种名为“ 夸度” 夸度和一般面 eX (QPax) 的新型方法, 有效解决这些问题。 我们首先开发 QPAX 来解决 dirichlettlet 问题, 在高端平方方方方方平面展示一个高端的Q。