We present the concept of approximate intermittent computing and demonstrate its application. Intermittent computations stem from the erratic energy patterns caused by energy harvesting: computations unpredictably terminate whenever energy is insufficient. Existing solutions maintain equivalence to continuous executions by creating persistent state. The performance penalty is massive: system throughput reduces while energy consumption increases. Approximate intermittent computations trade the accuracy of the results for sparing the entire overhead to maintain equivalence to a continuous execution. We use approximation to limit the extent of stateful computations to the single power cycle, enabling the system to shift the energy budget for managing persistent state towards an immediate approximate result. First, we apply approximate intermittent computing to human activity recognition. We design an anytime variation of support vector machines able to improve the accuracy of the classification as energy is available. We build a hw/sw prototype using kinetic energy and show a 7x improvement in system throughput compared to state of the art, while retaining 83% accuracy in a setting where the best attainable accuracy is 88%. Next, we apply approximate intermittent computing in a sharply different scenario, that is, embedded image processing, using loop perforation. Using a different hw/sw prototype we build and diverse energy traces, we show a 5x improvement in system throughput compared to state of the art, while providing an equivalent output in 84% of the cases.


翻译:我们提出了近似间歇计算的概念并展示了其应用。 间歇计算来自能源收获造成的不稳定能源模式: 在能源不足的情况下计算出无法预测的间歇性能源模式: 在能源不足的情况下, 计算出无法预测地终止。 现有解决方案保持与持续处决的等效性。 性能处罚是巨大的: 系统过量减少, 能源消耗增加。 近似间计算将结果的准确性与整个间接费用的准确性进行交易, 以保持整个间接费用的等值, 以保持与持续执行的等值。 我们使用近似间歇性计算将状态的计算限制在单一电力周期中, 使系统能够将能源预算用于管理持久性状态, 转向直接的近似间歇性计算结果。 首先, 我们在人类活动识别中应用大约的间歇性计算方法。 我们设计一个支持矢量机器的随时变换, 以便提高分类的准确性能。 我们使用动能能源消耗量的精度, 并且显示系统比艺术状态改进了7x的精确度, 同时保留83%的精确度在一种环境中, 一种非常不同的假设中,, 即使用循环处理图像,, 并显示我们用84 的等效的等效的原型 。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2021年6月30日
【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
78+阅读 · 2021年1月25日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
5+阅读 · 2018年10月4日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员