Tree-shaped graphical models are widely used for their tractability. However, they unfortunately lack expressive power as they require committing to a particular sparse dependency structure. We propose a novel class of generative models called mixtures of all trees: that is, a mixture over all possible ($n^{n-2}$) tree-shaped graphical models over $n$ variables. We show that it is possible to parameterize this Mixture of All Trees (MoAT) model compactly (using a polynomial-size representation) in a way that allows for tractable likelihood computation and optimization via stochastic gradient descent. Furthermore, by leveraging the tractability of tree-shaped models, we devise fast-converging conditional sampling algorithms for approximate inference, even though our theoretical analysis suggests that exact computation of marginals in the MoAT model is NP-hard. Empirically, MoAT achieves state-of-the-art performance on density estimation benchmarks when compared against powerful probabilistic models including hidden Chow-Liu Trees.


翻译:树形图模型因易于计算而被广泛使用。然而,它们缺乏表达能力,因为需要对特定的稀疏依赖结构进行承诺。我们提出了一种新的生成模型类,称为混合所有树:即,对于$n$个变量,混合所有可能的($n^{n-2}$个)树形图模型。我们证明了可以以紧凑的方式(使用多项式大小的表示)对这种模型进行参数化,从而通过随机梯度下降进行可计算性和优化。此外,通过利用树形模型的可计算性,我们设计了快速收敛的条件采样算法,用于近似推断,尽管我们的理论分析表明在MoAT模型中精确计算边际分布是NP难问题。在实证方面,与强大的概率模型(包括隐Chow-Liu树)相比,MoAT在密度估计基准测试中实现了最先进的性能。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2020年12月17日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员