The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments, offering a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium, ultimately providing increased environmental intelligence for diverse operation objectives. One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces with limited, or even the absence of, computing hardware. In this paper, we consider multi-user and multi-RIS-empowered wireless systems, and present a thorough survey of the online machine learning approaches for the orchestration of their various tunable components. Focusing on the sum-rate maximization as a representative design objective, we present a comprehensive problem formulation based on Deep Reinforcement Learning (DRL). We detail the correspondences among the parameters of the wireless system and the DRL terminology, and devise generic algorithmic steps for the artificial neural network training and deployment, while discussing their implementation details. Further practical considerations for multi-RIS-empowered wireless communications in the sixth Generation (6G) era are presented along with some key open research challenges. Differently from the DRL-based status quo, we leverage the independence between the configuration of the system design parameters and the future states of the wireless environment, and present efficient multi-armed bandits approaches, whose resulting sum-rate performances are numerically shown to outperform random configurations, while being sufficiently close to the conventional Deep Q-Network (DQN) algorithm, but with lower implementation complexity.
翻译:新兴的可再配置智能表面技术(RIS)是作为智能无线环境的推进器提供的,为无线媒体上电磁信号传播动态控制提供了高度可扩缩、低成本、硬件高效和几乎能源中立的解决方案,为无线媒体上电磁信号传播动态控制提供了高可扩缩、低成本、高硬件效率和近乎能源中立的解决方案,最终为多种业务目标提供了更多的环境情报。设想在可再配置的无线电环境中密集部署RIS(RIS)的主要挑战之一是多种元表面的高效配置,其复杂性有限,甚至缺乏计算机硬件。在本文件中,我们考虑多用户和多功能无线系统的多功能无线系统系统,对在线机器的学习方法进行彻底调查,以协调调控各种金枪鱼组件的配置。 侧重于将电磁率最大化作为具有代表性的设计目标,我们提出了基于深度强化学习(DRL)的综合问题配置。 我们详细介绍了无线系统和DRL术语之间的对应关系,设计通用算法步骤,而超越了常规神经网络培训和部署,同时讨论其实施的细节。 与当前多功能-DRL的快速配置相比, 将展示了多功能的快速配置,而后的新版本的系统-直系的系统-直系的系统-直系-直系的直系-直系-直系的直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-直系-