Minerals play a critical role in the advanced energy technologies necessary for decarbonization, but characterizing mineral deposits hidden underground remains costly and challenging. Inspired by recent progress in generative modeling, we develop a learning method which infers the locations of minerals by masking and infilling geospatial maps of resource availability. We demonstrate this technique using mineral data for the conterminous United States, and train performant models, with the best achieving Dice coefficients of $0.31 \pm 0.01$ and recalls of $0.22 \pm 0.02$ on test data at 1$\times$1 mi$^2$ spatial resolution. One major advantage of our approach is that it can easily incorporate auxiliary data sources for prediction which may be more abundant than mineral data. We highlight the capabilities of our model by adding input layers derived from geophysical sources, along with a nation-wide ground survey of soils originally intended for agronomic purposes. We find that employing such auxiliary features can improve inference performance, while also enabling model evaluation in regions with no recorded minerals.
翻译:矿物在实现脱碳所需的先进能源技术中扮演着关键角色,但表征隐藏于地下的矿藏仍成本高昂且充满挑战。受生成式建模近期进展的启发,我们开发了一种学习方法,通过对资源可得性的地理空间图进行掩码与填补来推断矿物位置。我们利用美国本土的矿物数据验证了该技术,并训练了高性能模型,其中最佳模型在1×1平方英里空间分辨率的测试数据上达到了$0.31 \pm 0.01$的Dice系数和$0.22 \pm 0.02$的召回率。我们方法的一大优势是能够轻松整合辅助数据源进行预测,这些数据可能比矿物数据更为丰富。通过添加源自地球物理数据的输入层,以及最初为农业目的设计的全国范围土壤地面调查数据,我们展示了模型的强大能力。研究发现,采用此类辅助特征可提升推断性能,同时使模型能够在无矿物记录的区域进行评估。