Matrix factorization (MF) is one of the most efficient methods for rating predictions. MF learns user and item representations by factorizing the user-item rating matrix. Further, textual contents are integrated to conventional MF to address the cold-start problem. However, the textual contents do not reflect all aspects of the items. In this paper, we propose a model that leverages the information hidden in the item co-click (i.e., items that are often clicked together by a user) into learning item representations. We develop TCMF (Textual Co Matrix Factorization) that learns the user and item representations jointly from the user-item matrix, textual contents and item co-click matrix built from click data. Item co-click information captures the relationships between items which are not captured via textual contents. The experiments on two real-world datasets MovieTweetings, and Bookcrossing) demonstrate that our method outperforms competing methods in terms of rating prediction. Further, we show that the proposed model can learn effective item representations by comparing with state-of-the-art methods in classification task which uses the item representations as input vectors.
翻译:矩阵要素化(MF) 是最高效的评级预测方法之一。MF 通过将用户项目评级矩阵考虑在内,学习用户和项目表示方式。此外,文本内容被整合到常规的MF 中,以解决冷启动问题。然而,文本内容并不反映项目的所有方面。在本文中,我们提出了一个模型,利用项目共同点击(即经常被用户点击的物品)中隐藏的信息进行学习项目表示方式。我们开发了TCMF(Textal Comex 参数化),从用户项目项目表示方式、文本内容和项目共同点击数据构建的矩阵中,共同学习用户和项目表示方式。项目共同单击信息捕捉了不通过文本内容捕获的项目之间的关系。关于两个真实世界数据集MoviceTweings和Bookcross的实验表明,我们的方法在评级预测方面超越了相互竞争的方法。此外,我们显示,拟议的模型可以通过将使用项目表示方式作为投入矢量的任务中的状态方法进行比较,学习有效的项目表示方式。