We study multiple testing in the normal means problem with estimated variances that are shrunk through empirical Bayes methods. The situation is asymmetric in that a prior is posited for the nuisance parameters (variances) but not the primary parameters (means). If the prior were known, one could proceed by computing p-values conditional on sample variances; a strategy called partially Bayes inference by Sir David Cox. These conditional p-values satisfy a Tweedie-type formula and are approximated at nearly-parametric rates when the prior is estimated by nonparametric maximum likelihood. If the variances are in fact fixed, the approach retains type-I error guarantees.
翻译:我们研究通常手段的多种测试问题,其估计差异因经验性贝耶斯方法而缩小。情况是不对称的,因为先假定了扰动参数(变量),而不是主要参数(手段)。如果先假定了先假定了先假定了先假定了扰动参数(变量),但先假定了先假定了先假定了先假定了先假定了先假定了先假定的参数(手段 ) 。 如果先假定了先假定了先假定了先假定的参数( 手段 ) 。 如果先假定了先假定了先假定的参数( p 值 ), 则可根据抽样差异来计算 p ; 戴维· 考克斯爵士称之为Bayes 部分推断的战略。 这些有条件的p价值满足了Tweedie 型公式, 当先假定了前假定值以非参数最大可能性来估计时,这些条件大致是接近参数的。如果事实上差异是固定的,那么该方法保留了类型I 错误保证。</s>