Probabilistic numerical methods (PNMs) solve numerical problems via probabilistic inference. They have been developed for linear algebra, optimization, integration and differential equation simulation. PNMs naturally incorporate prior information about a problem and quantify uncertainty due to finite computational resources as well as stochastic input. In this paper, we present ProbNum: a Python library providing state-of-the-art probabilistic numerical solvers. ProbNum enables custom composition of PNMs for specific problem classes via a modular design as well as wrappers for off-the-shelf use. Tutorials, documentation, developer guides and benchmarks are available online at www.probnum.org.
翻译:概率数字方法(PNMs)通过概率推断解决数字问题,这些方法是为线性代数、优化、集成和差分方程模拟而开发的。PNMs自然地吸收了先期的问题信息,并量化了由于有限计算资源和随机输入而造成的不确定性。本文介绍ProbNum:一个提供最新最先进的概率数字解算器的Python图书馆。ProbNum通过模块设计和外贴使用的包装纸,使特定问题类的PNMs能够自定义组成。Toutoms、文件、开发指南和基准可在www.probnum.org上查阅。