Using lower precision in algorithms can be beneficial in terms of reducing both computation and communication costs. Motivated by this, we aim to further the state-of-the-art in developing and analyzing mixed precision variants of iterative methods. In this work, we focus on the block variant of low-synchronization classical Gram-Schmidt with reorthogonalization, which we call BCGSI+LS. We demonstrate that the loss of orthogonality produced by this orthogonalization scheme can exceed $O(u)\kappa(\mathcal{X})$, where $u$ is the unit roundoff and $\kappa(\mathcal{X})$ is the condition number of the matrix to be orthogonalized, and thus we can not in general expect this to result in a backward stable block GMRES implementation. We then develop a mixed precision variant of this algorithm, called BCGSI+LS-MP, which uses higher precision in certain parts of the computation. We demonstrate experimentally that for a number of challenging test problems, our mixed precision variant successfully maintains a loss of orthogonality below $O(u)\kappa(\mathcal{X})$. This indicates that we can achieve a backward stable block GMRES algorithm that requires only one synchronization per iteration.
翻译:使用较低精密的算法可以降低计算和通信成本。 受此驱动, 我们的目标是在开发和分析迭代方法的混合精密变方时, 进一步推进最先进的计算和分析。 在这项工作中, 我们侧重于低同步古典古典Gram- Schmidt 的块变方, 我们称之为 BCGSI+LS。 我们然后证明, 这个正方位化方案产生的正方位变方位损失可能超过$( u)\ kappa (\ mathca{ X}) 。 在计算的某些部分中, 我们实验性地显示, 美元是单位圆形和 $\ kappa (mathcal{X} 美元) 的单位组合变方位。 混合精度变方块的质数是正向化, 因此我们一般无法期望这会导致一个后向稳定的块块 GMRES 执行。 我们然后开发一个混合的算法变方位变方, 叫做 BCSCI+LS- MP, 在某些计算中使用更高的精确度。 我们实验性地证明, 我们混合精确变方变量只能低于一个测试问题, $xxxxxxxxxxxx 的平平平平平平平的算。