An efficient resource management scheme is critical to enable network slicing in 5G networks and in envisioned 6G networks, and artificial intelligence (AI) techniques offer promising solutions. Considering the rapidly emerging new machine learning techniques, such as graph learning, federated learning, and transfer learning, a timely survey is needed to provide an overview of resource management and network slicing techniques of AI-enabled wireless networks. This article provides such a survey along with an application of knowledge transfer in radio access network (RAN) slicing. In particular, we firs provide some background on resource management and network slicing, and review relevant state-of-the-art AI and machine learning (ML) techniques and their applications. Then, we introduce our AI-enabled knowledge transfer and reuse-based resource management (AKRM) scheme, where we apply transfer learning to improve system performance. Compared with most existing works, which focus on the training of standalone agents from scratch, the main difference of AKRM lies in its knowledge transfer and reuse capability between different tasks. Our paper aims to be a roadmap for researchers to use knowledge transfer schemes in AI-enabled wireless networks, and we provide a case study over the resource allocation problem in RAN slicing.
翻译:高效资源管理计划对于在5G网络和设想的6G网络中实现网络切除至关重要,人工智能技术也提供了有希望的解决办法。考虑到迅速出现的新的机器学习技术,如图表学习、联合学习和转让学习等,需要及时进行调查,以提供对AI型无线网络资源管理和网络切除技术的概览。这一条提供了这样的调查,同时在无线电接入网络(RAN)切除中应用知识转让。特别是,我们提供资源管理和网络切除的一些背景,并审查相关的最新人工智能和机器学习技术及其应用。然后,我们推出我们借助于AI型知识转让和再利用的资源管理(AKRM)计划,在其中我们应用转让学习来改进系统性能。与大多数现有工作相比,重点是从零到零到零的自成一体剂培训,AKRMM的主要区别在于其知识转移和再利用能力。我们的文件旨在成为研究人员使用AI型无线网络中知识转移计划的路线图,我们在RAN网络中提供资源分配问题的案例研究。