The use of deep neural networks (DNN) has dramatically elevated the performance of automatic speaker verification (ASV) over the last decade. However, ASV systems can be easily neutralized by spoofing attacks. Therefore, the Spoofing-Aware Speaker Verification (SASV) challenge is designed and held to promote development of systems that can perform ASV considering spoofing attacks by integrating ASV and spoofing countermeasure (CM) systems. In this paper, we propose two back-end systems: multi-layer perceptron score fusion model (MSFM) and integrated embedding projector (IEP). The MSFM, score fusion back-end system, derived SASV score utilizing ASV and CM scores and embeddings. On the other hand,IEP combines ASV and CM embeddings into SASV embedding and calculates final SASV score based on the cosine similarity. We effectively integrated ASV and CM systems through proposed MSFM and IEP and achieved the SASV equal error rates 0.56%, 1.32% on the official evaluation trials of the SASV 2022 challenge.


翻译:近十年来,深神经网络(DNN)的使用大大提高了自动扬声器校验(ASV)的性能,但是,ASV系统很容易通过欺骗式攻击而中和,因此,SASV质疑(SASV)的设计和持有是为了促进发展能够实施ASV的系统,通过将ASV和防波反制(CM)系统结合到SASV的嵌入和计算SASV的最后得分,从而考虑掩盖攻击。在本文中,我们提议了两个后端系统:多层过敏分分集成模型(MSFM)和综合嵌入投投投投投投投投投投投投投投投机(IEP),MSFM、分录后端系统、衍生SASV分数(利用ASV和CM分以及嵌入),另一方面,IEP将ASV和CM结合了SAV嵌入SV的嵌入和CM的系统,根据相近似性嵌入和计算SASV的最后得分。我们提议通过MSFMFM和IEP有效整合和内嵌入系统,并实现了SASV的差率为0.50.5,在正式评价2022挑战的试验中实现了0.5。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Memory and Capacity of Graph Embedding Methods
Arxiv
0+阅读 · 2022年8月18日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员