The use of deep neural networks (DNN) has dramatically elevated the performance of automatic speaker verification (ASV) over the last decade. However, ASV systems can be easily neutralized by spoofing attacks. Therefore, the Spoofing-Aware Speaker Verification (SASV) challenge is designed and held to promote development of systems that can perform ASV considering spoofing attacks by integrating ASV and spoofing countermeasure (CM) systems. In this paper, we propose two back-end systems: multi-layer perceptron score fusion model (MSFM) and integrated embedding projector (IEP). The MSFM, score fusion back-end system, derived SASV score utilizing ASV and CM scores and embeddings. On the other hand,IEP combines ASV and CM embeddings into SASV embedding and calculates final SASV score based on the cosine similarity. We effectively integrated ASV and CM systems through proposed MSFM and IEP and achieved the SASV equal error rates 0.56%, 1.32% on the official evaluation trials of the SASV 2022 challenge.
翻译:近十年来,深神经网络(DNN)的使用大大提高了自动扬声器校验(ASV)的性能,但是,ASV系统很容易通过欺骗式攻击而中和,因此,SASV质疑(SASV)的设计和持有是为了促进发展能够实施ASV的系统,通过将ASV和防波反制(CM)系统结合到SASV的嵌入和计算SASV的最后得分,从而考虑掩盖攻击。在本文中,我们提议了两个后端系统:多层过敏分分集成模型(MSFM)和综合嵌入投投投投投投投投投投投投投投投机(IEP),MSFM、分录后端系统、衍生SASV分数(利用ASV和CM分以及嵌入),另一方面,IEP将ASV和CM结合了SAV嵌入SV的嵌入和CM的系统,根据相近似性嵌入和计算SASV的最后得分。我们提议通过MSFMFM和IEP有效整合和内嵌入系统,并实现了SASV的差率为0.50.5,在正式评价2022挑战的试验中实现了0.5。