Multifidelity and multioutput optimisation algorithms are of active interest in many areas of computational design as they allow cheaper computational proxies to be used intelligently to aid experimental searches for high-performing species. Characterisation of these algorithms involves benchmarks that typically either use analytic functions or existing multifidelity datasets. However, analytic functions are often not representative of relevant problems, while preexisting datasets do not allow systematic investigation of the influence of characteristics of the lower fidelity proxies. To bridge this gap, we present a methodology for systematic generation of synthetic fidelities derived from preexisting datasets. This allows for the construction of benchmarks that are both representative of practical optimisation problems while also allowing systematic investigation of the influence of the lower fidelity proxies.
翻译:多纤维和多输出优化算法在计算设计的许多领域引起了积极的兴趣,因为这些算法允许明智地使用更廉价的计算代理来帮助对高性能物种进行实验性搜索。这些算法的特性涉及通常使用分析功能或现有的多纤维数据集的基准。然而,分析功能往往不能代表相关问题,而先前存在的数据集不允许系统调查低忠诚代言人特征的影响。为弥补这一差距,我们提出了一个系统生成从先前存在的数据集中得出的合成忠诚的方法。这样可以构建既代表实际优化问题的基准,又允许系统调查低忠诚代言人的影响。