Primality generation is the cornerstone of several essential cryptographic systems. The problem has been a subject of deep investigations, but there is still a substantial room for improvements. Typically, the algorithms used have two parts trial divisions aimed at eliminating numbers with small prime factors and primality tests based on an easy-to-compute statement that is valid for primes and invalid for composites. In this paper, we will showcase a technique that will eliminate the first phase of the primality testing algorithms. The computational simulations show a reduction of the primality generation time by about 30% in the case of 1024-bit RSA key pairs. This can be particularly beneficial in the case of decentralized environments for shared RSA keys as the initial trial division part of the key generation algorithms can be avoided at no cost. This also significantly reduces the communication complexity. Another essential contribution of the paper is the introduction of a new one-way function that is computationally simpler than the existing ones used in public-key cryptography. This function can be used to create new random number generators, and it also could be potentially used for designing entirely new public-key encryption systems.
翻译:原始数据生成是几个基本的加密系统的基石。 这个问题一直是一个深入调查的主题, 但仍有很大的改进空间。 通常, 使用的算法有两个部分的试算法, 目的是消除具有小质因子的数字, 以及基于对质和对合成材料无效的简单计算语句的原始测试。 在本文中, 我们将展示一种技术, 它将消除初始测试算法的第一阶段。 计算模拟显示, 在1024比位RSA 键配对的情况下, 原始数据生成时间减少了大约30%。 这对于共享 RSA 键的分散环境特别有利, 因为关键生成算法的初始试算法部分可以免费避免。 这也大大降低了通信的复杂性。 本文的另一个重要贡献是引入一种新的单向函数, 其计算起来比公共钥匙加密中所使用的新单向函数简单。 该功能可用于创建新的随机数生成器, 并且也可以被潜在地用于设计全新公用钥匙加密系统。