Consider the universal gate set for quantum computing consisting of the gates X, CX, CCX, omega^dagger H, and S. All of these gates have matrix entries in the ring Z[1/2,i], the smallest subring of the complex numbers containing 1/2 and i. Amy, Glaudell, and Ross proved the converse, i.e., any unitary matrix with entries in Z[1/2,i] can be realized by a quantum circuit over the above gate set using at most one ancilla. In this paper, we give a finite presentation by generators and relations of U_n(Z[1/2,i]), the group of unitary nxn-matrices with entries in Z[1/2,i].
翻译:考虑由X、CX、CCX、omega ⁇ dagger H和S等门组成的量子计算通用门。 所有这些门都有Z[1/2,i]环中的矩阵条目,这是包含1/2和i.Amy、Glaudell和Ross的复合数字中最小的分层。 反之,即任何带有Z[1/2,i]项的单一矩阵可以通过最多使用一个安西拉的量子电路在以上门上设置的量子电路实现。在本文中,我们用发电机和Un(Z[1/2,i)](Z[1/2,i])和Z[1/2,i]的单一nxn-maters组的关系作了有限的介绍。