To improve the security and reliability of wind energy production, short-term forecasting has become of utmost importance. This study focuses on multi-step spatio-temporal wind speed forecasting for the Norwegian continental shelf. A graph neural network (GNN) architecture was used to extract spatial dependencies, with different update functions to learn temporal correlations. These update functions were implemented using different neural network architectures. One such architecture, the Transformer, has become increasingly popular for sequence modelling in recent years. Various alterations of the original architecture have been proposed to better facilitate time-series forecasting, of which this study focused on the Informer, LogSparse Transformer and Autoformer. This is the first time the LogSparse Transformer and Autoformer have been applied to wind forecasting and the first time any of these or the Informer have been formulated in a spatio-temporal setting for wind forecasting. By comparing against spatio-temporal Long Short-Term Memory (LSTM) and Multi-Layer Perceptron (MLP) models, the study showed that the models using the altered Transformer architectures as update functions in GNNs were able to outperform these. Furthermore, we propose the Fast Fourier Transformer (FFTransformer), which is a novel Transformer architecture based on signal decomposition and consists of two separate streams that analyse trend and periodic components separately. The FFTransformer and Autoformer were found to achieve superior results for the 10-minute and 1-hour ahead forecasts, with the FFTransformer significantly outperforming all other models for the 4-hour ahead forecasts. Finally, by varying the degree of connectivity for the graph representations, the study explicitly demonstrates how all models were able to leverage spatial dependencies to improve local short-term wind speed forecasting.
翻译:为改善风能生产的安全性和可靠性,短期预测已变得极为重要。本研究的重点是挪威大陆架多步波状时速风速预测。 使用一个图形神经网络(GNN)架构来提取空间依赖性, 并使用不同的更新功能来学习时间相关性。 这些更新功能是使用不同的神经网络架构实施的。 其中一个架构,即变换器,近年来对序列建模越来越受欢迎。 已经提议对原始架构进行各种修改,以便更好地促进时间序列预测,其中的重点放在Inrefor、 LogSparse变换器和Autorest。 这是首次对风预报应用LogSparse变换器和Autorexer 结构来提取空间依赖空间依赖性, 并且第一次在任何这些更新功能中,这些结构,即变换时速模型(LSTM)和多Li-Layer freautrial Forlor) 模型, 通过这些模型使用变换变换的变速模型来更新 GNGNFF 的快速变现, 和变现变压的变压结构显示这些模型, 这些变压的变压的变压式模型能够通过两个变压结构, 变压的变压的变压的变压结构, 这些变压的变式的变压的变压的变压的变压的变压的变压的变压的变压的变压的变式的变更的变式的变式的变式的变式的变式结构, 直式的变式的变式的变式的变式的变换的变换式的变式的变式的变式的变换式的变式的变换式的变式的变换式结构结构的变式结构的变换为变换为变式结构的变换为变式结构的变式结构的变更的变更的变式结构的变更的变式, 。的变式的变式的变式的变式的变式的变式的变式的变式结构的变更更更更更更更更式的变式的变式的变式的变式的变式的变式的变式的变式结构的变式的变式的变式结构的变式结构的变式的变式的变式