We study the following combinatorial problem. Given a set of $n$ y-monotone curves, which we call wires, a tangle determines the order of the wires on a number of horizontal layers such that any two consecutive layers differ only in swaps of neighboring wires. Given a multiset $L$ of swaps (that is, unordered pairs of wires) and an initial order of the wires, a tangle realizes $L$ if each pair of wires changes its order exactly as many times as specified by $L$. Deciding whether a given multiset of swaps admits a realizing tangle is known to be NP-hard [Yamanaka et al., CCCG 2018]. We prove that this problem remains NP-hard if every pair of wires swaps only a constant number of times. On the positive side, we improve the runtime of a previous exponential-time algorithm. We also show that the problem is in NP and fixed-parameter tractable with respect to the number of wires.
翻译:我们研究以下的组合问题。 鉴于我们称之为电线的一组美元 y-monoton曲线,一个缠绕决定了若干水平层线线的顺序,因此任何两个连续层只在相邻线的互换中存在差异。鉴于多套套的交换(即没有顺序的电线对齐)和线的初始顺序,如果每对电线更改其顺序的精确次数与美元相同,那么一个缠绕就达到1美元。决定一个特定的多套交换器是否承认一个已经实现的勾结是已知的NP-hard [Yamanaka等人,CCCG 2018]。我们证明,如果每对电线只交换固定次数,这一问题仍然难以解决。在正面方面,我们改进了先前指数-时间算法的运行时间。我们还表明,问题在于NP和固定的分数与电线数有关。