We consider moving boundary problems for biophysics and introduce a new computational framework to handle the complexity of the bulk-surface PDEs. In our framework, interpretability is maintained by adapting the fast, generalizable and accurate structure preservation scheme in [Q. Cheng and J. Shen, \textit{Computer Methods in Applied Mechanics and Engineering}, 391 (2022)]. We show that mesh distortion is mitigated by adopting the pioneering work of [B. Duan and B. Li, \textit{SIAM J. Sci. Comput.}, 46 (2024)], which is tied to an Arbitrary Lagrangian Eulerian (ALE) framework. We test our algorithms accuracy on moving surfaces with boundary for the following PDEs: advection-diffusion-reaction equations, phase-field models of Cahn-Hilliard type, and Helfrich energy gradient flows. We performed convergence studies for all the schemes introduced to demonstrate accuracy. We use a staggered approach to achieve coupling and further verify the convergence of this coupling using numerical experiments. Finally, we demonstrate broad applicability of our work by simulating state-of-the-art tests of biophysical models that involve membrane deformation.
翻译:本文研究生物物理中的移动边界问题,并引入一种新的计算框架以处理体-面耦合偏微分方程的复杂性。该框架通过采用[Q. Cheng and J. Shen, \textit{Computer Methods in Applied Mechanics and Engineering}, 391 (2022)]中快速、可泛化且精确的结构保持格式,保持了模型的可解释性。我们通过引入[B. Duan and B. Li, \textit{SIAM J. Sci. Comput.}, 46 (2024)]的开创性工作(该工作与任意拉格朗日-欧拉框架相结合)有效缓解了网格畸变问题。我们在带边界的移动曲面上针对以下偏微分方程测试了算法的精度:对流-扩散-反应方程、Cahn-Hilliard型相场模型以及Helfrich能量梯度流。我们对所有提出的格式进行了收敛性分析以验证其精度。采用交错迭代方法实现耦合过程,并通过数值实验进一步验证了该耦合方案的收敛性。最后,我们通过模拟涉及膜形变的前沿生物物理模型测试案例,证明了本框架具有广泛的适用性。