To ensure proper knowledge representation of the kitchen environment, it is vital for kitchen robots to recognize the states of the food items that are being cooked. Although the domain of object detection and recognition has been extensively studied, the task of object state classification has remained relatively unexplored. The high intra-class similarity of ingredients during different states of cooking makes the task even more challenging. Researchers have proposed adopting Deep Learning based strategies in recent times, however, they are yet to achieve high performance. In this study, we utilized the self-attention mechanism of the Vision Transformer (ViT) architecture for the Cooking State Recognition task. The proposed approach encapsulates the globally salient features from images, while also exploiting the weights learned from a larger dataset. This global attention allows the model to withstand the similarities between samples of different cooking objects, while the employment of transfer learning helps to overcome the lack of inductive bias by utilizing pretrained weights. To improve recognition accuracy, several augmentation techniques have been employed as well. Evaluation of our proposed framework on the `Cooking State Recognition Challenge Dataset' has achieved an accuracy of 94.3%, which significantly outperforms the state-of-the-art.


翻译:为确保厨房环境的适当知识代表性,厨房机器人必须认识到正在烹调的食品的状态。虽然对物体探测和识别领域进行了广泛研究,但物体状态分类的任务相对来说仍没有探索。不同烹饪状态不同,不同类内成分的高度相似性使得任务更具挑战性。研究人员最近提议采用深学习战略,但是,他们还没有取得很高的绩效。在这项研究中,我们使用了用于烹调国家识别任务的愿景变异器(VIT)结构的自我注意机制。拟议方法将全球显著特征从图像中包涵,同时也利用了从更大数据集中汲取的重量。这种全球关注使得模型能够承受不同烹饪物品样品之间的相似性,而采用转移学习有助于通过使用预先训练的重量克服缺乏感性偏差。为了提高认知准确性,我们还使用了几种增强技术。我们关于“国家识别挑战数据集”的拟议框架的评估达到了94.3%的准确性,大大超出状态。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员