Rank models play a key role in industrial recommender systems, advertising, and search engines. Existing works utilize semantic tags and user-item interaction behaviors, e.g., clicks, views, etc., to predict the user interest and the item hidden representation for estimating the user-item preference score. However, these behavior-tag-based models encounter great challenges and reduced effectiveness when user-item interaction activities are insufficient, which we called "the long-tail ranking problem". Existing rank models ignore this problem, but its common and important because any user or item can be long-tailed once they are not consistently active for a short period. In this paper, we propose a novel neighbor enhancement structure to help train the representation of the target user or item. It takes advantage of similar neighbors (static or dynamic similarity) with multi-level attention operations balancing the weights of different neighbors. Experiments on the well-known public dataset MovieLens 1M demonstrate the efficiency of the method over the baseline behavior-tag-based model with an absolute CTR AUC gain of 0.0259 on the long-tail user dataset.
翻译:排名模型在工业推荐系统、广告和搜索引擎中发挥着关键作用。 现有的作品使用语义标签和用户项目互动行为,例如点击、视图等,来预测用户的兴趣和项目隐藏的代表性,以估计用户项目偏好分。 但是,当用户项目互动活动不足(我们称之为“长尾排名问题 ” ) 时,这些基于行为标签的模型会遇到巨大的挑战,效力会降低。 现有的排名模型忽略了这个问题,但其共同和重要之处在于任何用户或项目一旦在很短的时间内不连续运行,就会长期运行,因此它们就会被忽略。 在本文中,我们建议建立一个新的邻居强化结构,帮助培训目标用户或项目的代表。它利用类似的邻居(静态或动态相似性),并借助多层次的关注操作来平衡不同邻居的权重。 对众所周知的公共数据集MoveLens 1M的实验显示这种方法比基线行为标签模型的效率,长0.0259美元在长距离用户数据集上获得绝对的 CTR AUC。