Shared autonomy methods, where a human operator and a robot arm work together, have enabled robots to complete a range of complex and highly variable tasks. Existing work primarily focuses on one human sharing autonomy with a single robot. By contrast, in this paper we present an approach for multi-robot shared autonomy that enables one operator to provide real-time corrections across two coordinated robots completing the same task in parallel. Sharing autonomy with multiple robots presents fundamental challenges. The human can only correct one robot at a time, and without coordination, the human may be left idle for long periods of time. Accordingly, we develop an approach that aligns the robot's learned motions to best utilize the human's expertise. Our key idea is to leverage Learning from Demonstration (LfD) and time warping to schedule the motions of the robots based on when they may require assistance. Our method uses variability in operator demonstrations to identify the types of corrections an operator might apply during shared autonomy, leverages flexibility in how quickly the task was performed in demonstrations to aid in scheduling, and iteratively estimates the likelihood of when corrections may be needed to ensure that only one robot is completing an action requiring assistance. Through a preliminary simulated study, we show that our method can decrease the overall time spent sanding by iteratively estimating the times when each robot could need assistance and generating an optimized schedule that allows the operator to provide corrections to each robot during these times.
翻译:共享自主技术使人与机器人协同完成各种复杂和高可变的任务。现有的工作主要集中在一个人与一台机器人共享自主权。与之相反,本文提出了一种多机器人共享自主权的方法,使一个操作者能够在两个协调机器人并行完成同一任务时即时进行纠正。与多个机器人共享自主权面临基本的挑战。人类只能同时纠正一个机器人,如果没有协调,人类可能会长时间处于不活跃状态。因此,我们开发了一种方法,通过对齐机器人的学习运动以最大限度地利用人类的专业知识。我们的核心思想是利用来自演示的学习以及时间扭曲来安排基于什么时候可能需要协助来调度机器人的动作。我们的方法利用运营商演示中的变化来识别操作员在共享自主权期间可能应用的纠正类型,利用演示中完成任务速度的灵活性来帮助调度,并迭代估计可能需要纠正的时间,以确保只有一个机器人完成需要协助的动作。通过一个初步的模拟研究,我们展示了我们的方法可以减少砂光总时间,通过迭代地估计每个机器人什么时候可能需要协助,生成一个优化的时间表,使操作者可以在这些时间内为每个机器人提供纠正。