In this paper, we propose primitive rateless (PR) codes. A PR code is characterized by the message length and a primitive polynomial over $\mathbf{GF}(2)$, which can generate a potentially limitless number of coded symbols. We show that codewords of a PR code truncated at any arbitrary length can be represented as subsequences of a maximum-length sequence ($m$-sequence). We characterize the Hamming weight distribution of PR codes and their duals and show that for a properly chosen primitive polynomial, the Hamming weight distribution of the PR code can be well approximated by the truncated binomial distribution. We further find a lower bound on the minimum Hamming weight of PR codes and show that there always exists a PR code that can meet this bound for any desired codeword length. We provide a list of primitive polynomials for message lengths up to $40$ and show that the respective PR codes closely meet the Gilbert-Varshamov bound at various rates. Simulation results show that PR codes can achieve similar block error rates as their BCH counterparts at various signal-to-noise ratios (SNRs) and code rates. PR codes are rate-compatible and can generate as many coded symbols as required; thus, demonstrating a truly rateless performance.


翻译:在本文中,我们提出了原始无率代码。 PR代码的特点是电文长度和纯多元度的原始值超过$\mathbf{GF}(2)美元,这可能会产生无限数量的编码符号。 我们进一步发现,任意长度截断的PR代码代码的编码词可以作为最大长度序列的子序列( 美元顺序) 。 我们给出了一个最原始多语序列列表, 信息长度可高达40美元, 并显示各自的PR代码与以不同费率约束的吉尔伯特- Varhamov相近。 模拟结果显示, PR代码的含重分布可以以松散的双向分布相近。 我们还发现, PR代码最小含宽度的最小值, 任何任意长度截断的代码代码的编码都可以作为最大长度的子序列。 我们提供一份最原始的多语序列列表, 显示, 各自的 Prilbert- Varhamov 代码与不同费率的原始原始版本相近。 模拟结果显示, PR 代码可以达到类似块误率, 的代号可以作为BCH 的代号, 的代号, 的代号可以证明。

0
下载
关闭预览

相关内容

模式识别 Pattern Recognition
专知会员服务
51+阅读 · 2020年12月14日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
61+阅读 · 2020年7月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月13日
Physical Primitive Decomposition
Arxiv
4+阅读 · 2018年9月13日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
61+阅读 · 2020年7月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月29日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员