Broad Explainable Artificial Intelligence moves away from interpreting individual decisions based on a single datum and aims to provide integrated explanations from multiple machine learning algorithms into a coherent explanation of an agent's behaviour that is aligned to the communication needs of the explainee. Reinforcement Learning (RL) methods, we propose, provide a potential backbone for the cognitive model required for the development of Broad-XAI. RL represents a suite of approaches that have had increasing success in solving a range of sequential decision-making problems. However, these algorithms all operate as black-box problem solvers, where they obfuscate their decision-making policy through a complex array of values and functions. EXplainable RL (XRL) is relatively recent field of research that aims to develop techniques to extract concepts from the agent's: perception of the environment; intrinsic/extrinsic motivations/beliefs; Q-values, goals and objectives. This paper aims to introduce a conceptual framework, called the Causal XRL Framework (CXF), that unifies the current XRL research and uses RL as a backbone to the development of Broad-XAI. Additionally, we recognise that RL methods have the ability to incorporate a range of technologies to allow agents to adapt to their environment. CXF is designed for the incorporation of many standard RL extensions and integrated with external ontologies and communication facilities so that the agent can answer questions that explain outcomes and justify its decisions.


翻译:我们提议,强化学习(RL)方法为开发宽度XAI所需的认知模式提供了潜在的骨干。RL是一套在解决一系列相继决策问题方面越来越成功的方法。然而,这些算法都作为黑箱问题解答器运作,通过一系列复杂的价值和功能,模糊其决策政策,从而模糊其决策政策。可扩展的RL(XRL)是相对近期的研究领域,目的是开发从代理人的传播需求中提取概念的技术:环境观;内在/外部动机/保险;Q-价值、目标和目的。本文旨在引入一个概念框架,称为Causal XRL(CXF)框架(CXF),将当前的XRL(X)研究和RL(RL)作为当前X(X)研究和使用RL(RL)系统作为基础,以便把其一体化技术纳入到宽度-XAI(RL)系统的发展。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月13日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员