Zero-Shot Learning has been a highlighted research topic in both vision and language areas. Recently, most existing methods adopt structured knowledge information to model explicit correlations among categories and use deep graph convolutional network to propagate information between different categories. However, it is difficult to add new categories to existing structured knowledge graph, and deep graph convolutional network suffers from over-smoothing problem. In this paper, we provide a new semantic enhanced knowledge graph that contains both expert knowledge and categories semantic correlation. Our semantic enhanced knowledge graph can further enhance the correlations among categories and make it easy to absorb new categories. To propagate information on the knowledge graph, we propose a novel Residual Graph Convolutional Network (ResGCN), which can effectively alleviate the problem of over-smoothing. Experiments conducted on the widely used large-scale ImageNet-21K dataset and AWA2 dataset show the effectiveness of our method, and establish a new state-of-the-art on zero-shot learning. Moreover, our results on the large-scale ImageNet-21K with various feature extraction networks show that our method has better generalization and robustness.
翻译:最近,大多数现有方法都采用了结构化知识信息,以模拟各类别之间明确的相关性,并使用深图演变网络在不同类别之间传播信息。然而,很难在现有结构化知识图中增加新的类别,深图演变网络存在过度移动的问题。在本文中,我们提供了一个新的语义强化知识图,其中包含专家知识和语义相关性。我们的语义强化知识图可以进一步加强各类别之间的关联,使其更容易吸收新的类别。为了在知识图上传播信息,我们建议建立一个新的残余图变网络,以有效缓解过度移动的问题。在广泛使用的大型图像网络21K数据集和AWA2数据集上进行的实验显示了我们的方法的有效性,并建立了关于零光学的新状态。此外,我们在大型图像网络-21K和各种特征提取网络上的结果显示,我们的方法更加普遍和可靠。