Phase-field-based models have become common in material science, mechanics, physics, biology, chemistry, and engineering for the simulation of microstructure evolution. Yet, they suffer from the drawback of being computationally very costly when applied to large, complex systems. To reduce such computational costs, a Unet-based artificial neural network is developed as a surrogate model in the current work. Training input for this network is obtained from the results of the numerical solution of initial-boundary-value problems (IBVPs) based on the Fan-Chen model for grain microstructure evolution. In particular, about 250 different simulations with varying initial order parameters are carried out and 200 frames of the time evolution of the phase fields are stored for each simulation. The network is trained with 90% of this data, taking the $i$-th frame of a simulation, i.e. order parameter field, as input, and producing the $(i+1)$-th frame as the output. Evaluation of the network is carried out with a test dataset consisting of 2200 microstructures based on different configurations than originally used for training. The trained network is applied recursively on initial order parameters to calculate the time evolution of the phase fields. The results are compared to the ones obtained from the conventional numerical solution in terms of the errors in order parameters and the system's free energy. The resulting order parameter error averaged over all points and all simulation cases is 0.005 and the relative error in the total free energy in all simulation boxes does not exceed 1%.
翻译:在材料科学、机械、物理、生物学、化学和模拟微结构演变的工程学中,基于阶段的模型已变得司空见惯;然而,在对大型复杂系统应用时,由于计算成本非常昂贵而出现倒退;为了降低这种计算成本,以基于Unet的人工神经网络作为当前工作中的替代模型开发了一个基于Unet的人工神经网络;这个网络的培训投入来自基于粮食微结构演变范亨模型的初始-约束值问题数字解决方案(IBVPs)的结果;特别是,进行了大约250种不同初始序列参数的不同模拟,为每个模拟系统储存了200个阶段字段时间演变框架;为了降低这种计算成本,以美元为当前工作的替代模型开发了一个基于Unet的人工神经网络;为这个网络的培训投入来自最初(i+1)-美元框架的数值解决方案。对网络的评估采用测试数据集,包括基于不同于最初用于培训的不同配置的2200个微结构;为每个模拟模型储存了200个阶段的阶段演变时间框架的200个框架。经过培训的网络在初始参数中,使用90%的90%的数据是用这种数据框架的模型,在常规阶段的模型中,因此将所有平均序列的顺序的顺序计算结果,在常规的顺序中,从所有时间序列中进行。