In this work, we propose a model that can be used to infer the behavior of multiple animals. Our proposal is defined as a set of hidden Markov models that are based on the sticky hierarchical Dirichlet process, with a shared base-measure, and a STAP emission distribution. The latent classifications are representative of the behavior assumed by the animals, which is described by the STAP parameters. Given the latent classifications, the animals are independent. As a result of the way we formalize the distribution over the STAP parameters, the animals may share, in different behaviors, the set or a subset of the parameters, thereby allowing us to investigate the similarities between them. The hidden Markov models, based on the Dirichlet process, allow us to estimate the number of latent behaviors for each animal, as a model parameter. This proposal is motivated by a real data problem, where the GPS coordinates of six Maremma Sheepdogs have been observed. Among the other results, we show that four dogs share most of the behavior characteristics, while two have specific behaviors.
翻译:在这项工作中,我们提出了一个可以用来推断多种动物行为的模型。 我们的提案被定义为一套基于粘性等级的Dirichlet 进程的隐性Markov 模型, 以及一个共同基量测量和STAP 排放分布。 潜在分类代表了动物的行为, 由STAP参数描述。 根据潜在分类, 动物是独立的。 由于我们在STAP参数上的分布正规化方式, 动物可以在不同的行为中分享一组或一组参数, 从而允许我们调查它们之间的相似性。 基于 Dirichlet 进程的隐性Markov 模型, 允许我们估计每个动物的潜在行为数量, 作为一种模型参数。 这个建议是由一个真正的数据问题驱动的, 在那里, 6个马雷马舍普多犬的GPS坐标被观察到。 其他结果中, 我们显示4只狗分享了大部分的行为特征, 而2只有具体的行为特征 。