In the regret-based formulation of Multi-armed Bandit (MAB) problems, except in rare instances, much of the literature focuses on arms with i.i.d. rewards. In this paper, we consider the problem of obtaining regret guarantees for MAB problems in which the rewards of each arm form a Markov chain which may not belong to a single parameter exponential family. To achieve logarithmic regret in such problems is not difficult: a variation of standard Kullback-Leibler Upper Confidence Bound (KL-UCB) does the job. However, the constants obtained from such an analysis are poor for the following reason: i.i.d. rewards are a special case of Markov rewards and it is difficult to design an algorithm that works well independent of whether the underlying model is truly Markovian or i.i.d. To overcome this issue, we introduce a novel algorithm that identifies whether the rewards from each arm are truly Markovian or i.i.d. using a total variation distance-based test. Our algorithm then switches from using a standard KL-UCB to a specialized version of KL-UCB when it determines that the arm reward is Markovian, thus resulting in low regret for both i.i.d. and Markovian settings.


翻译:在多武装盗匪(MAB)问题的基于遗憾的提法中,除了罕见的情况外,许多文献都集中在武器上,以一.d.奖励作为奖励。在本文中,我们考虑了如何为MAB问题获得遗憾保证的问题,在这些问题上,每只手臂的奖赏形成一个可能不属于单一参数指数式家族的Markov链条。要在这些问题上实现对论的遗憾并不困难:对Kullback-Leibel Unible Infority Bound(KL-UCB)的标准调换工作。然而,从这种分析中获得的常数之所以差,原因如下:i.i.d.奖励是Markov的特殊例子,很难设计出一种与基本模型是否真正属于Markovian或i.i.d.不相独立的算法。为了克服这个问题,我们采用了一种新型的算法,用完全变换的远程测试来确定每只臂的奖赏是否真正属于Markovian或i.i.i.d。我们的算法随后将使用标准的KL-UCB奖赏转换为K-L-UCB的专业化版本。因此,Markov和Markban的奖状都决定是Mark的。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员