This paper assesses when the validity of difference-in-differences and related estimators depends on functional form. We provide a novel characterization: the parallel trends assumption holds under all strictly monotonic transformations of the outcome if and only if a stronger "parallel trends"-type condition holds for the cumulative distribution function of untreated potential outcomes. This condition for parallel trends to be insensitive to functional form is satisfied if and essentially only if the population can be partitioned into a subgroup for which treatment is effectively randomly assigned and a remaining subgroup for which the distribution of untreated potential outcomes is stable over time. We introduce falsification tests for the insensitivity of parallel trends to functional form. We also show that it is impossible to construct any estimator that is consistent for the average treatment effect on the treated (ATT) without either imposing functional form restrictions or imposing assumptions that identify the full distribution of untreated potential outcomes. Our results suggest that researchers who wish to point-identify the ATT should either (i) argue treatment is as-if randomly assigned, (ii) provide a method for inferring the full counterfactual distribution for the treated group, or (iii) justify the validity of the specific chosen functional form.
翻译:本文评估了差异和相关估计值的有效性取决于功能形式。我们提供了一个新的特征:平行趋势假设在所有严格的结果单一变异之下都存在,如果而且只有当一个更强大的“平行趋势”类型的条件维持着未经处理的潜在结果的累积分布功能时。如果而且基本上只有在以下情况下才满足了平行趋势对功能形式不敏感的这一条件:即人口可以被分割成一个实际上随机分配治疗的分组和另一个未经处理的潜在结果分布长期稳定的分组;我们为平行趋势对功能形式的不敏感引入伪造测试;我们还表明,在不施加功能形式限制或强加能够确定未处理的潜在结果全部分布的假设的情况下,不可能建立任何与被处理的(ATT)的平均治疗效果一致的估算器。我们的结果表明,希望标注AT的研究人员应当:(一) 认为治疗是按随机分配的方式进行,(二) 为被处理的群体提供一种推断所选择的功能形式完全反向分布的方法,或(三) 证明所选择的特定特性的功能形式是正当的。