In this paper, we investigate the matrix estimation problem in multi-response regression with measurement errors. A nonconvex error-corrected estimator is proposed to estimate the matrix parameter via a combination of the loss function and the nuclear norm regularization. Then under the low-rank constraint, we analyse the statistical and computational theoretical properties of global solution of the nonconvex regularized estimator from a general point. In the statistical aspect, we establish the recovery bound for the global solution of the nonconvex estimator, under restricted strong convexity on the loss function. In the computational aspect, we solve the nonconvex optimization problem via the proximal gradient method. The algorithm is proved to converge to a near-global solution and achieve a linear convergence rate. In addition, we also establish sufficient conditions for the general results to be held for specific types of corruptions, including the additive noise and missing data. Probabilistic consequences are obtained by applying the general results. Finally, we demonstrate our theoretical consequences by several numerical experiments on the corrupted errors-in-variables multi-response regression models. Simulation results show remarkable consistency with our theory under high-dimensional scaling.
翻译:在本文中,我们用测量错误来调查多反应回归中的矩阵估算问题。 提议了一个非convex错误校正的估算器, 以便通过损失函数和核规范正规化相结合来估计矩阵参数。 然后在低级别限制下, 我们从一个总点分析非convex正规估算器全球解决方案的统计和计算理论属性。 在统计方面, 我们为非cablex估计器的全球解决方案建立回收链条, 在对损失函数的高度共和度限制下。 在计算方面, 我们通过准氧化梯度方法解决非cablex优化问题。 算法被证明与近全球解决方案趋同, 并实现线性趋同率。 此外, 我们还为特定类型的腐败的总体结果, 包括添加噪音和缺失的数据, 应用一般结果可以得出概率性后果。 最后, 我们通过对腐败的可变多反应回归模型进行数性实验, 展示了我们的理论后果。 模拟结果显示在高层次下与我们理论的显著一致性。